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ABSTRACT 

Radar and optical remote sensing data are  used  to develop a classification algorithm based on nonlinear 
estimation theory. The study site is the H. J. Andrew forest in Oregon, USA, which has significant 
topography and several old-growth conifer stands with biomass values sometimes  exceeding 1000 
tonshectare. Polarimetric C-band, L-band, and  P-band AIRSAR data, interferometric C-band TOPSAR 
data, and six channels of Landsat TM data are  used  in a regression analysis that relates them to several 
measurements of one or more forest variables. Parametric expressions are derived and used to estimate 
the same variable(s)  at  other  locations from the combination of AIRSAR and  TM data. Statistical 
characteristics of the variable estimates are derived and  used to define variable classes. These classes are 
the basis for future analytic  estimation  algorithms. 

1. INTRODUCTION 

The  expanded remotely sensed  data  space  consisting  of  coincident  radar  backscatter and optical 
reflectance data provides for a more complete description of the Earth surface. This is especially useful 
where many variables are needed to describe a certain scene, such as in  the presence of dense and 
complex-structured vegetation or where there is considerable underlying topography. The goal of this 
paper is to use a combination of radar and optical data to develop a methodology for forest variable 
classification for dense and  hilly forests, and  further, class-specific variable estimation. 

To achieve classification, first a number of variables are defined which are of interest to ecologists for 
forest process modeling (Coughlan  and  Dungan, 1996). These include leaf biomass,  LAI,  and tree height. 
The remote sensing data from radar and  TM are  used  to formulate a multivariate regression analysis 
problem given the ground meastircmcnts of the variables. Each class of each variable is defined by a 
probability density function (pdf), the spread of which defines the range of that class. Classification 
accuracies arc defined using the dcgrcc of overlap bctwecn the variable estimate pdfs: the smaller the 
overlap region, the bcttcr the  scp'aration of classcs. Using  the regrcssion relations derived using ground 
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measurements, the variablcs can  be estimated and classificd for other areas in the scene. Validation is 
carried out using ground measurements at points  not already used in deriving the parametric regression 
relations. Classification rcsults pro\.idc the basis for  the future work  of class-specific variable estimation 
using  radar  and  optical data. 

2. SITE  DESCRIPTION 

The  area to be  used  in this study is the H. J. Andrews  Forest in Oregon, one of the  Long-Term Ecological 
Research (LTER) sites in  the US. This area consists of various dense old-growth conifer stands, with 
biomass values ranging from less than 100 tonshectare to over 1000 tons/hectare. The average altitude is 
about 950 m, with the lowest and highest points at  about 6OOm and  1700m, respectively. The Andrews 
forest has been  the subject of many ecological studies over several decades, resulting in an abundance of 
ground measurements. There are several permanent GPS monuments and meteorological stations. The 
forest stand characteristics have also been extensively documented. In particular, foliage biomass and 
leaf-area index (LAI) values for approximately 30 reference stands have recently become available 
(Means et al, 1999). We will use  half of these measurements in deriving the regression relations and the 
other half for validation. 

3. REMOTE  SENSING  DATA ' 

The remote sensing data types to be used  are  the  C-,  L-,  and  P-band polarimetric radar data from  the  JPL 
airborne SAR (AIRSAR), the  C-band single-polarization data  from  the JPL topographic SAR (TOPSAR), 
and the Thematic Mapper (TM) data  from  Landsat, all acquired in  late April 1998. The total number of 
useful separate data channels from the AIRSAR is 15 (three  frequencies,  each  with three unique 
polarizations and amplitude and phase of the like-polarized correlation),  from the TOPSAR is 2 
(amplitude and  phase of the interferometric correlation), and  from  the TM is 6 (the thermal band  is not 
used). 

These data types are of varying pixel resolutions, and  hence must be resampled to a common resolution. 
The range pixel spacing of the -41RSAR is 3.3m for C-  and L-bands and 6.6m for P-band. The  TOPSAR 
pixel spacing is 10m,  and  the TM pixel size is 30m. 

Radiometric and polarimetric calibrations have  been carried out on the  AIRSAR  data. Due to pronounced 
topography, the radiometric calibration involves an  added step to remove the effect  of local slopes. 
Furthermore, for the areas where  the backscattering process involves ground or double-bounce scattering, 
a correction factor has to be  applied  to  take  the  local slopes into account. The Landsat TM data were 
acquired under almost cloud-free conditions. All radar data are coregistered to the TM data, since the 
latter are  already geocoded. Ground  control  points  are  chosen manually to  tie the various datasets. 

4. REGRESSION  MODEL 

For demonstration purposes, the analysis will  be performed for only one stand variable, e.g., foliage 
biomass. We shall denote it  by X. Thc various data channels will  be denotcd as D,, where i = 1 , .  . . .,N 
with N being the total number of available  data channels. As a rcsult of regression analysis, the  measured 
data  can  be fit into polpomials in the measured  variable X. This can be written as 



where M is the order of regression  and crri is  the fitting error for each Di. Our analysis will not further 
carry errors resulting from regression fitting. However, errors on  ground measurements X are used to 
study their effect in the derived regression relations, i.e., on ai,. If the fitting errors are ignored, we can 
simplify  the  above  equation as 

where D is the vector containing all data sets and f simply denotes a vector function. An example is 
shown in Figure 1, where the polynomial fits to two radar and two TM channels are derived, with foliage 
mass as the independent variable. 

5. ESTIMATION  AND  CLASSIFICATION 

The derived relationships between  the data and the  selected ground measurements of the variable can be 
used to estimate that variable elsewhere in the  scene  covered by the  remote sensing instruments. To do so, 
an estimation algorithm  can  be  used  that  minimizes  the  quantity 

L = ID - f(X)I2 + IX-Xapriori12 

Here, Xlpriori represents our previous knowledge  about  the variable to be estimated. The L2 norms are both 
defined through the respective covariances, and  hence  allow the inclusion of the statistical characteristics 
of both  the  data  and  the variable measurements  (Moghaddam and Saatchi,  1999). 

To minimize L, an iterative algorithm is used as follows: 

1. 
2. 
3. 
4 

5. 

Assume an initial arbitraq estimate for X. 
Calculate f(X) from  the  previously  established  regression model. 
Calculate L and decide if  it  is  small  enough. If so, X is  the solution. 
If L is  not small enough, calculate the gradient or  other appropriate direction of  change  for L, 
followed by the calculation ;of a step length in that direction. This step involves calculation of 
derivatives of f(X). 
Update X and go back to the  second step above. 

The statistical estimation errors can  be  found by superimposing simulated errors on  the derived regression 
coefficients of f(X), including measured covariances of the data channels and the stand variable, and 
repeating the estimation procedure for each  added  value of noise. It  will  be  assumed that the noise has a 
uniform Gaussian distribution. Its mean  value  can be determined from the regression analysis if the error 
in ground measurements of X are'known. 

6. RESULTS 

The above algorithm was applied to the radar and  optical data described in Section 3 to classify foliage 
biomass within the H.J. Andrews forest. The  advantage  of fusing optical  and radar data over using only 
one of the two data types to estimate foliage mass is shown  in  Figure 2. The figure shows that the overall 
estimation  accuracy for the  entire  range  of  variable  values is higher when  both  data  tyes  are used. 

TO show  the statistical accuracy  of  the algorithm, a uniformly Gaussian error was superimposed on  the 
coefficients. The  noise amplitude'was 5 %  of the coefficient valus. The error analysis described in Section 



5 was carried  out. The results are shown in Figure 3, where it  is  observed that the estimates fall in 
ranges,” as opposed to being dctcrministically and uniqucly calculated. In other words, depending on 

the spread of the estimated values, they may not be all statistically independent. Rather, they  may be more 
uniquely described by a “class”  with a spread  givcn by the  width of a defined  dependence range. 

C L  

As such, the estimated variable values and thcir statistical distribution suggest a classification scheme. 
Although classification of the variable X might connote a reduced information content, it in fact contains 
all the “useful” and  unique information derived from  the regression-estimation algorithm. For the same 
number of classes, the classification accuracy, i.e., the statistical independence of classes, is expected to 
become higher as the number  of data channels used  is incrcased. Conversely, for similar classification 
accuracies, fewer classes are expected to be identified if  fewer channels are used. This method brings 
optical and radar into a unified statistical framework, allowing “fusion.”‘ 
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Figure  1.  Polynomial  regression  relations  between  remote 
sensing  data  and  measured  foliage mass 
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Figure 2. Simultaneous use of both  optical and  radar  data 
improves the accuracy of estimation compared to using only one 
data type. 
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Figure 3. Statistical  accuracy of estimated values assuming that the regression coefficients have a 5% 
Gaussian  error. 


